

A Study on the Improvement of Mercury and Arsenic Pollution Treatment Technologies of Soil and Groundwater in Korea and Taiwan (II) -Laws, Policies & Remedial Technologies-

2019. 12. 18.

JIU CORPORATION LEE JAE WON

CONTENTS

2. Mercury and Arsenic Pollution in Korea

2. Mercury and Arsenic Pollution in Korea

JIU CORPORATION

UCORPORATION

11

Contonninonto (mg (kg)	Worrisome level			Countermeasure standard		
Contaminants (IIIg/Kg)	Area 1	Area 2	Area 3	Area 1	Area 2	Area 3
Cadmium	4	10	60	12	30	180
Copper	150	500	2,000	450	1,500	6,000
Arsenic	25	50	200	75	150	600
Mercury	4	10	20	12	30	60
Lead	200	400	700	600	1,200	2,100
Hexavalent chromium	5	15	40	15	45	120
Zinc	300	600	2,000	900	1,800	5,000
Nickel	100	200	500	300	600	1,500
Fluorine	400	400	800	800	800	2,000
Organic phosphorus compound	10	10	30	-	-	-
Polychlorinated biphenyl	1	4	12	3	12	36
Cyanide	2	2	120	5	5	300
Phenol	4	4	20	10	10	50
Benzene	1	1	3	3	3	9
Toluene	20	20	60	60	60	180
Ethylbenzene	50	50	340	150	150	1,020
Xylene	15	15	45	45	45	135
ТРН	500	800	2,000	2,000	2,400	6,000
TCE	8	8	40	24	24	120
PCE	4	4	25	12	12	75
Benzo (a) pyrene	0.7	2	7	2	6	21
1.2-Dichloroethane	5	7	70	15	20	210

01 Sail Standard (22 contaminante)

Catagory	Contaminanants	Standards		
Category		Household water	Agricultural water	Industrial wate
	рН	5.8-8.5	6.0-8.5	5.0-9.0
General contaminants	Total coliforms (MPN/100 ml)	5,000 ≥	-	-
(4)	Nitrate (mg/L)	20 ≥	20 ≥	40 ≥
	Chloride (mg/L)	250 ≥	250 ≥	500 ≥
	Cadmium (mg/L)	0.01 ≥	0.01 ≥	0.02 ≥
	Arsenic (mg/L)	0.05 ≥	0.05 ≥	0.1 ≥
	Cyanide (mg/L)	0.01 ≥	0.01 ≥	0.2 ≥
	Mercury (mg/L)	0.001 ≥	0.001 ≥	0.001 ≥
	Diazinon (mg/L)	0.02 ≥	0.02 ≥	0.02 ≥
	Parathion (mg/L)	0.06 ≥	0.06 ≥	0.06 ≥
	Phenol (mg/L)	0.005 ≥	0.005 ≥	0.01 ≥
Specific hazardous	Lead (mg/L)	0.1 ≥	0.1 ≥	0.2 ≥
(16)	Chromium (mg/L)	0.05 ≥	0.05 ≥	0.1 ≥
	Trichloroethylene (mg/L)	0.03 ≥	0.03 ≥	0.06 ≥
	Tetrachloroethylene (mg/L)	0.01 ≥	0.01 ≥	0.02 ≥
	1.1.1-Thrichloroethane (mg/L)	0.15 ≥	0.3 ≥	0.5 ≥
	Benzene (mg/L)	0.015 ≥	-	-
	Toluene (mg/L)	1≥	-	-
	Ethylbenzene (mg/L)	0.45 ≥	-	-
	Xylene(mg/L)	0.75 ≥	-	-

05. Groundwater Standard (20 contaminants)

01. Remedial technologies for heavy metal

Methods	Targeted metal(loid)s	Efficiency (%)	References
Physical remediation			
Thermal remediation	Hg	99% of Hg could be removed from soil	Hseu et al. (2014)
Soil washing (column test)	Cd, Zn, Cr, Pb	70, 30, 25, and 10% of Cd, Zn, Cr, Pb at neutral pH were extracted, respectively	Abumaizar and Smith (1999)
Soil washing (pilot test)	As	63-75% of As was leached out	Ko et al. (2006)
Chemical remediation			
Chemical leaching			
Using 0.1 M sodium metabisulfite + 0.01M EDTA	Cd, Zn, Pb, Cr	100, 70, 60, and 16% of Cd, Zn, Pb, Cr were extracted, respectively	Abumaizar and Smith (1999)
Using CaCl ₂	Cd	83% of Cd was decreased after treatment	Makino et al. (2007)
Using 0.1 M hydrochloric acid	Co, As, Hg	80-90% of metals depending on temperature and time were leached out	Alghanmi et al. (2015)

01. Remedial technologies for heavy metal

Methods	Targeted metal(loid)s	Efficiency (%)	References
Immobilization			
Using amendments			
CaCO ₃	Zn, Cd, Pb	Flow-weighted mean concentration of Zn, Cd, and Pb were decreased by 98.5, 88.3, and 57%, respectively	Houben et al. (2012)
Iron grit	Pb	Flow-weighted mean concentration of Pb was decreased by 83%	Houben et al. (2012)
Conocarpus biochar	Mn, Cu, Cd, Zn	Reduced shoot heavy metal concentration in plants by 61–28%, respectively	Al-Wabel et al (2014)
Phosphate rock	Cd, Pb, Cu, Zn	Reduced uptake in plant shoots by 74-14%, respectively	Zhao et al. (2014)
Vitrification	Mn, Cu, As, Fe, Ni, Zn, Hg, Pb, Cd, Cr, Se	Concentration of heavy metals after treatment $(T > 1300 \text{ °C})$ reduced in leachate by almost 91–100%	Navarro et al. (2013)
Electrokinetic remediation	Cu, Pb	After treatment, 41 and 31% removal of Cu and Pb were observed (using 4–26 V as current)	Ottosen et al. (2012)
Phytoremediation			
Phytoextraction	Pb, Zn, As, Cd, Cu, Ni	Removal capacity by Alnus firma was evaluated 77–10%, respectively	Babu et al. (2013)
Phytoextraction	Pb	Efficiency process 30–80% with maximum value in Alternanthera phyloxeroides	Cho-Ruk et al. (2006)
Phytoextraction	Cd, Zn	Populus accumulated both Cd and Zn up to 82%	Hassinen et al. (2009)
Biological remediation			
Bioleaching	Cu, Cd, Pb, Zn	Maximum removals of 98–15% for metals were achieved. (Using a fungus Aspergillus niger)	Ren et al. (2009)
Taken up metals by	Cd, Hg, Ag, Zn, Cu, Ni	170, 58, 54, 14, 15, 13% dry wt of metals were taken up	Rajendran et al

Current practices for mercury contaminated soil remediation in-situ technologies in green; ex-situ (on-site or offsite) technologies in brown – the numbers on the chart pie correspond to the number of times de remediation technologies have been cited by the participants.

· 환경부 KEITI 한국환경산업기술원

03. Soil Washing (Recently Developed)

High pressure bubble jet washing technology

Bubble jet washing system is a technology to remediate the contaminated soil particle by separating fine particles where many toxic contaminant species exists.

Particularly, even in the case of pollution of harmful substances (heavy metals) having low solubility, since the fine particles containing contaminants are separated and purified, theoretically, it is a technology applicable to the majority of pollution due to low dependence on the contaminant species or concentration.

03. Soil Washing (Recently Developed)

High pressure bubble jet washing technology

The high-pressure jet water is sprayed from the nozzle into narrow tube, creating a high-speed air flow around the jet stream. When contaminated soil and water are injected into it, jet streams and fast air are pulled into the integrated narrow tube and instantly mixed.

Contaminants(and file particles) are separated from coarse soil particles through rapid expansions and collision on the wall

JIU CORPORATION 19

0.1

SIZE (MM)

0.01

0

0.001

0.0001

XRF						
No	Compound Name	Conc.(%)	No	Compound Name	Conc.(%)	
1	Na ₂ O	0.679	13	Co ₃ O ₄	0.018	
2	MgO	1.73	14	CuO	0.111	
3	Al_2O_3	18.25	15	ZnO	0.393	
4	SiO ₂	56.01	16	Rb ₂ O	0.023	
5	P_2O_5	0.113	17	SrO	0.014	
6	SO ₃	0.563	18	ZrO_2	0.029	
7	K ₂ Õ	4.171	19	Nb_2O_5	0.03	
8	CaO	1.953	20	CdO	0.037	
9	TiO ₂	0.716	21	BaO	0.055	
10	Cr_2O_3	0.026	22	CeO ₂	0.00	
11	MnO	0.195	23	PbO	0.091	
12	Fe ₂ O ₃	5.724				

1

20

0

10

JIU CORPORATION 21

JIU CORPORATION

• The honeycomb structure is geared to obtain a very large filtration area over a very small space.

· 환경부 KEITI 한국환경산업기술원

01. Chemical Washing & Electrokinetic Process

• Overview / State of contaminations

Janghang smelter in Chungcheongnam-do (Due to air pollutants and soil contamination which caused serious problem to corps and human health)

UCORPORATION 27

03. Stabilization

04. Stabilization

Remediation process

Purpose

- Reducing the bioavailability of arsenic in contaminated soil
- Prevention of leaching of pollutants by rainfall

Area]	
ZONE	TARGET AREA (m ²)	Additional Action
A zone	75,732	Vegetative Cover
B zone	34,262	Seedspray

- Stabilizer : Metafix (EHC5)
- Input ratio (Target soil weight ratio) : 1%

